
1SECTION TEXT HERE

2 table of contents

table of contents

A

B

C

D

E

F

•	 01

•	 02

•	 03

•	 04

•	 05

•	 01

•	 01

•	 02

•	 02

•	 03

•	 03

•	 04

•	 04

•	 05

•	 05

•	 06

•	 06

•	 07

author and project data

project overview

diagrams

design challenges and prospects

grasshopper definition

photographic documentation

initial research

establishing new criteria

additional objectives

process

collaboration

preface

input and cleanup

grasshopper

vertice detection

node deformations and limitations

convex hull generation

improving code

extruded strut tag

fabrication

strug length

prospects

top portion strut nodes

lower portion strut nodes

3author and project data

author and proeject data

TITLE

AUTHOR

PROJECT PARTICIPANTS

CITY / COUNTRY

TYPE

CONSTRUCTION

IMPORTANT TERMS AND DEFINITIONS

LIMB: Procedurally generated multi-nodal strut joints

Josh Hallett - Graduate student studying architecture at the University
of Texas at Arlington

The work presented herein is a continuation of research objectives
established in the Spring of 2014, and much credit is owed to Khang
Nguyen and Tenaj Pinder, who were instrumental in reaching those
objectives. Professor Brad Bell has provided indispensable guidance
and resources, and he continues to furnish both valuable input and
material assistance in meeting research outcomes. Collaboration
with an Undergraduate researchers Halima Arevalo, Anruth Muthama,
and David Garcia yielded excellent results, and my research
outcomes were enriched, consequently.

Dallas Texas
United States

Research/Development of potential pre-cast concrete structural
assembly techniques

The ultimate intent is to fabricate a pre-fabricated, concrete
installation of an undetermined scale on campus or at another
suitable location.

Strut - any linear segment of reinforcing material acting as the
structural agent between their interconnecting centroids.

Node - component acting as a ‘slotted’ joint at the centroid of two or
more intersecting struts.

Procedural Modeling - a form of generative modeling that takes
advantage of pre-defined algorithms to propagate a specified series
of ‘steps’ or changes to the geometry as a result of modifications to
the input criteria.

Grasshopper (GA) - GUI based parametric coding plug-in for the
NURBS based 3D modeling platform Rhinoceros.

3

4 SECTION TEXT HERE4 project overview

project overview

01

02

INITIAL RESEARCH

ESTABLISHING NEW CRITERIA

LIMB constitutes a continuation of research initiated
in the Spring of 2014 that sought to discover new
and exploratory methods for reinforcing precast
concrete panels with non-uniform porosity. It was
determined during the course of this research that
steel reinforcing rebar could be accurately and
effectively located within a panel by utilizing a 3D
printed nodes with interior “slots” whereby the rebar
could be inserted and then fixed via wire-tie. These
nodes were generated in the parametric plug-in tool
Grasshopper, which enabled complete control over
the nodes geometric properties.

This allowed not only for a vast amount of
flexibility in terms of configuration and scale, but
rapid alterations in the geometry as a response to
changing design criteria and testing. The drawbacks
of is particular GA (Grasshopper) definition was multi-
fold, however. Where the node could be 3D printed
reliably, and was somewhat sturdy, each node had
to be manually adjusted to account for each nodal
centroid. Furthermore, the node could only account
for strut orientations in the X and Y Axis.

Given these limitations in this node, it became
apparent that the initial GA code would need to be
rebuilt from the ground up to accommodate new
design criteria. This new code would need to enable
the procedural generation of nodes at all necessary
centroids within the panel/structure formwork, and
orient the insertion point of the strut in a similarly
procedural fashion. Thus, the intent was to create an
adaptive strut node that could:

-Identify the requisite centroidal intersections in a
porous panel or structure

-Generate geometry at those centroids such that they
corresponded to the necessary orientation of the strut
or rebar reinforcement

-Implement a cogent coding format that would allow
for rapid, tooless on-site assembly.

-Coding operation that could adequate calculate the
length of each strut in a structural system

5project overview

03

04

ADDITIONAL OBJECTIVES

PROCESS

Several other project objectives were specified,
such as exploring potential improvements to the
tensile, plastic formwork utilized in the fabrication
of Cast Thicket (TOPOCAST), and to utilize GA
plug-ins such as Kangaroo, Millipede, and Karumba
to explore further form optimization techniques.
Secondly, it was also considered advantageous
work cooperatively with an undergraduate team
that, itself, would be experimenting with novel
tensile-formwork casting techniques.

As noted previously, the strut-node would function
best if propagated simultaneously at all centroidal
node-points, and if their geometry could adapt
procedurally to changes in the input geometry
(in this case, 3D line segments representing the
‘structure’). “Functionality”, in this case, relating to
both the inherent accuracy of the digital model, and
the rapidity at which these models can be converted
into a file format suitable for printing.

This criteria proved doubly challenging relative to
past coding forays,as it would necessitate careful
manipulation and organization of data within ‘data
trees’ such that simultaneous manipulation of
geometry at multiple locations could be accomplished.
Geometry would need to conform to certain universal
geometrical and performative criteria, yet posses
morphological flexibility needed to integrate with stuts
at a specific centroid.

In order to solve these two design problems, the GA
code would need to properly interpolate the input
geometry. The input geometry needed to be reducible
to a series of intersecting line segments that could be
‘exploded’, such that the discontinuity between these
line segments, and thusly the connective centroids or
‘points’, could be located and effectively ordered into
a ‘list’ within a ‘data tree’. Unnecessary points would
then be culled from the data tree, leaving only those
points with multiple intersecting line-segments.

Spheres with a pre-defined radius are then generated
that these isolated points, and the intersection points
between the line segments and the outside ‘shell’ of
the sphere are detected.

Depicted top left: diagramtic representation of Cast
Thicket
Depicted bottom right: Cast Thicket on display in the
gallery space at UTA schoold Architecture.

6 project overview

04 PROCESS CONT.

Furthermore, these spheres are used to trim the
intersecting line segments at a certain length,
allowing their utilization in a variety of ways, including
the generation of Exoskeleton mesh elements and
locating planes used to position additional assets.

Exoskeleton, a plug-in for GA, “thickens line/node
into watertight meshes. It solves the nodes using
a convex hull and stitches the hulls together with
polygonal struts.” Subsequently, one can begin to
generate surprisingly flexible meshes around these
isolated point/line combinations. If the input geometry
(line segments are altered, the exoskeleton mesh
will update correspondingly. Further exoskeleton
segments are generated, and utilized in ‘Boolean
Difference” operations that produce slots in the
mesh, into which the struts will be inserted.

Integrated into the code are several auxiliary
functions, such as a labeling/tagging system and
a definition that would relocate the final, generated
geometry to C-Plane where they could be quickly
exported for 3D printing. Consequently, the overall
GA definition had to be rebuilt many times in order
to properly integrate changing research criteria and
to make certain functions more efficient.

Apart from the challenge of generating the
geometry, it was also essential that each node
could be feasibly fabricated via 3D printing (Fused
Deposition Modeling). Difficulty in achieving function
3D prints varied considerably depending on the
overall complexity of the geometry, and the quality
of the printer being utilized. Earlier node prototypes
could be printed reliably on conventional, consumer
grade printers. As the input geometry changed,
however, from simple branching structures, to
more complex geometries (such as cast thicket),
the degree of complexity in the nodes required a
printer capable of generating elaborate supports.
Luckily, access to a Stratasys Systems uPrint SE
Plus was provided. This printer could print models
at incredibly high resolution, ensuring near one to
one correspondence between the 3D geometry and
the final, fabricated node.

Research vectors ultimately resulted in a reduced-
scale production of a proposed skeletal framework
for Cast Thicket, and a full-scale skeletal framework
developed for an undergraduate research team
developing fabrication techniques for concrete
branching structures.

7project overview

05 COLLABORATION

Once the GA definition for the node had reached a
functional state, and it was demonstrated that node
prototypes could be successfully printed, direct
cooperation with Brad Bell’s undergraduate team
became advantageous. The undergraduate team
was currently exploring the extended application of
bulge casting (fabric casting) techniques originally
pioneered at the University of Manitoba by Mark
West. The teams intent was to explore casting
methodologies and novel formwork innovations that
would allow them to cast multi-directional branching
structures. As my research dealt with the structural
reinforcement of non-uniform, concrete branching
structures, there were natural synthesis between
research objectives. This collaboration would
provide me with the opportunity to apply my research
practically and direct my focus singularly to the
functionality of the node.

In addition to the GA work concerning the node,
generative modeling techniques making use of
L-Systems were explored, and a large number
of small-scale models were produced. It was
later deemed that the dendriform geometry was
structurally problematic, and a tripod like morphology
was devised in Rhino and then formally optimized in
Kangaroo through Mesh Relaxation.

It quickly became apparent that several different types
of nodes would need to be developed. Otherwise, the
interior reinforcement could not be properly integrated
within the overall formwork. Top and base nodes
would enable the undergraduate team to fix the steel
reinforcement to MDF formwork during casting, and
subsequently fixing the steel reinforcement.

While it sometimes proved problematic ensuring
that the internal, skeletal structure properly fit within
the formwork, the exercise demonstrated that, in
practice, the 3D nodes facilitated quick, accurate,
structural reinforcement.

Depicted top left: MDF forwork assembly with rebar
cage and interconnected nodes. Seven nodes in total
were printed for this prototype.
Depicted bottom left: The final hydrostone prototype
with reinforcing cage cast internally.

8 diagrams

ASSEMBLED

SECTION

XRAY

diagrams

Facetization of the mesh surface is achieved via the
‘split triangles subdivision’ component in Weaverbird,
a plugin for Grasshopper. The result is a highly efficient
mesh that simultaneously accelerates 3D printing by
eliminating curved surfaces.

expoxy wells

strut tag

strut slot

9diagrams

NODE TYPES

COMPLETE
ASSEMBLY

middle node

strut

base node

top node

10 design challenges and prospects

design challenges & prospects

01

01

PREFACE

GRASSHOPPER

The purpose of this section is two-fold: to elucidate
difficulties that arose during all aspects of the
research process, and to prime the next research
time that carries this work forward. Subsequently,
future teams will be fully aware of the challenges
they will likely encounter, and have a good baseline
for surmounting those problems.

As stated earlier, the most difficult challenge to
be faced when coding multiple nodes is ensuring
that geometry propagates correctly at all desired
locations. Confusion regarding data-trees, and how
they function, can easily result in hours of wasted
effort (as I learned firsthand). Once definitions reach
a certain scale - dozens of components - attempting
to resolve particular issues can easily confound
and frustrate. Given one’s general proficiency with
Grasshopper, it may be advisable to break coding
problems into manageable chunks.

If one is not well versed in Grasshopper, the nexus
for understanding the research presented here is to
practice deconstructing different types of geometry
into line/point, and then carefully clean up and
structure the data.

While the current version of Exoskeleton 2 allows
for a wide range of deformation, there are limitations
to keep in mind. If the angle between two line
segments is too acute, and the radius/thickness
of the mesh to large, an overlap in mesh geometry
will occur. This will prevent the convex hull from
being properly ‘drawn’, and the coder must either
reduce the acuteness of the angle, or reduce the
radius of the tubular geometry being generated by
the Exoskeleton component. One must carefully
evaluate the input geometry and ensure that the
angles between struts are not too acute, or take
steps to adjust the node geometry.

It is also crucial that one is able to calculate the
exact dimensions of the struts that will be utilized.
Though a methodology for accomplishing as much
has been provided, new research could explore
alternative strategies.

Seen here, the input geometry is ‘exploded’ into line and point, vertices
flattened, and then duplicate vertices grouped so that non-duplicates
can be culled via index masking/dispatch operation

Shown here is the routine for successfully generating the convex hulls
that will serve as the base geometry for the node. The overall length of
each node slot is dependent on the predefined radius of the spheres/
breps being used to trim the intersecting lines

11design challenges and prospects

03

04

NODE DEFORMATIONS AND LIMITATIONS

IMPROVING CODE

The most important aspect of the node is procedural
deformation with respect to input geometry. It’s
performance and, indeed, its utilization becomes
questionable if geometry cannot be developed around line
segments with acute angles. Continued research should
explore methodologies for developing convex hulls that
are not susceptible to overlap, and properly adapt to either
extremely acute/obtuse angles.

This goes without saying, but any modifications that reduce

the overall scale of the definition are ideas, as certain
operations (Mesh Difference, for example) can hog
system resources and changes to parameters can
take excruciatingly long to complete (or even crash the
definition!).

Lastly, it would also be advantageous to write a ‘better’
definition capable of relocating each node in the system
to a predefined location with an optimized orientation to
expedite 3D printing.

Obtuse angles yield no erratic or unwated outcomes. Even at 44 degrees, the definition continues to function with no
erros, though one should note that as the gap is reduced, the
chance of overlap between the strut-slots increases

At 36 degrees, minor drawing errors may develop in a small
number of nodes. These issues can usually be resolved either
by making slight alterations to geometry parameters.

Given the parameters of this node, failure occurs at 22 degrees.
The only options available are to reduce the radius of the
Exoskeleton ‘strut’, or increase the length of the strut-slot so that
the strut and node no longer overlap.

01

03 04

02

12 design challenges and prospects

05 FABRICATION

Difficulties faced during fabrication dealt almost
exclusively with 3D printing and the strength of the
printing material (ABS plastic, in this case). Scale
was a contributing factor to many failures, as many
consumer printers were unable to print nodes at
a small scale. Printing with rafts, or reducing the
number of nodes being printed can mitigate some
of these issues at scale, however, it proved to be
much more efficient to simply print smaller nodes on
a higher quality printer.

As mentioned previously, the sometimes unwieldy
geometry of the nodes will require 3D printed
supports in order for the print to be successful.
Supports generated by Makerware were deemed
unsatisfactory on every occasion. The uPrint SE
Plus proved to be the most reliable option, but at a
higher cost per print.

Even when printed at high density, ABS plastic will
delaminate quite easily given even a small amount
of force. Great care should be taken during
assembly to avoid putting too much pressure on
the protruding strut-slots, as these carry the most
risk of being cleaved from the core centroid of the
node. While improvements to geometry may yield
improved rigidity, the best solution would be to
change the filament material used during printing.

The success of any digital fabrication project
requires a close correlation between the final,
fabricated prototype, and its accuracy relative to the
digital model. Knowing whether or not there have
been slight deformations in the ABS during printing,
for instance, may be difficult to discern, and could
have considerable impact upon the final assembly.
If the material being utilized as the structural strut
is uneven or crooked, the final results may be even
more askew. On some occasions, the strut-slots
of several nodes had to be milled out with a larger
diameter bore so that the desired strut could be
properly fit to the node. The failure to account for
the variability of your building materials can result in
a series of compounding errors that further reduces
conformity to the digital mode.

Top right: An attempt to print 24 small, individual nodes in one
attempt ends in failure.

Middle & lower right: full-scale nodes broken during assembly.

13design challenges and prospects

06 PROSPECTS

While initial research has proved promising,
the intent is to produce a variable, procedurally
generated node suitable for industry utilization.
Currently, the nodes lack the material strength
necessary to withstand the abuse of a conventional
construction setting. Furthermore, the question
of whether or not the nodes meet industry ‘best-
practices’ for assembling rebar has yet to be
satisfactorily answered. Thus any future research
team should explore the following:

-Material strength. Nylon is a much stronger material
with high resistance to delamination when compared
to ABS or PLA plastics. The need for highly variable
deformations in the node geometry necessities a
material sympathetic to mass custimization.

-Fabrication accuracy: Develop methodologies that
ensure simultaneity with the digital model. Much like
Cast Thicket, the use of plum lines hanging from each
node, corresponding to a corresponding location on
the ground plane, would enable fabricators to make
minor adjustments as needed during assembly.

-Geometric optimization. Grasshopper plugins
such as Kangaroo or Millipede could refine the
node mesh, making the node both more structurally
sound and materially efficient.

-Multi-Discipline Integration. Consultation with
structural engineers (especially those experienced
with rebar) would be critical for determining whether
the fastening strategies presented here would be
ideal for industry implementation.

-Large-scale installation. Proof of concept has
been roughly demonstrated, but the development
of an installation combining both the flexibility of
reinforcing system composed of strut nodes, and
tensile formwork would present a unique opportunity
to combine a number of different research agendas
currently being pursued by Brad Bell and the Digital
Fabrication Consortium at UTA.

Top left: some unfortunate casualties during assembly of the
Cast Thicket mockup

Bottom left: the ends of each rebar segment needed to be
ground down in order for them to fit cleanly.

14 grasshopper defintion

grasshopper definition

01

01

BREAKDOWN

INPUT AND CLEANUP

The purpose of this section is to, hopefully, discombobulate
the GA definition for the uninitiated, or for anyone who
happens to take this research forward. Unfortunately,
and regardless of how detailed this guide might be,
Grasshopper definitions are innately idiosyncratic in
nature, each one representing the personal preferences
and workflows of the individuals who built them. There
are no work “standards” when it comes to Grasshopper,
unfortunately.

This is simple, yet crucial, portion of the definition. Depending on your input geometry, it ultimately needs to be reduced
to a combination of verities and line. The input geometry should be flattened, unnecessary vertices culled, and duplicates
deleted.

Point Groups search for points at a
provided distance from an existing set
of points.

Once the unneeded vertices have been
culled, use Delete Duplicate Points to
remove overlapping vertices

Prune your data trees with Clean Tree
and remove null values.

 I have attempted to group ‘component clusters’ based on
their function, but a good amount of reverse engineering
may be required nonetheless. Each cluster will be
diagramed, explained, and paired with some relevant
imagery from Rhino depicting various aspects of what that
cluster may generate or control. Access should also be
made to earlier definitions, the study of which will give you
insight into the developmental process of the node.

15grasshopper defintion

02

03

VERTICE DETECTION

CONVEX HULL GENERATION

If necessary, you may need to break out the top and bottom level vertices so as to generate specialized nodes. This
portion of the definition generates a scalable detection boundaries for both the top and bottom vertices.

Once the desired vertices have been isolated, use them to generate spheres. These spheres will be used to trim the line
segments that we’ve derived from the original input geometry. Use the Trim With Breps component and then pull out the
Inside List of ‘line-like curves’. These curves will be used to generate the convex hulls via the Exoskeleton 2 component,
so they’ll need to be flattened if they haven’t been already. The resulting meshes should be similar to those shown above.
Exoskeleton 2 will also be needed to create the subtractive geometry required for the Mesh Difference component.

16 grasshopper definition

03 CONVEX HULL GENERATION CONT.

Connecting the cleaned up, input curve geometry, and spheres to a Surface I Curve component will provide points and
normals from which Plane Normals will be located, and used to offset SDL Curves that then get piped into a second
Exoskeleton 2 component.

At this point, there should be two Exoskeleton 2 components generating both additive and subtractive geometry: the first
generating the ‘limbs’ for the strut node, and the second generating subtractive cylinders. It is generally advisable to Unify
Mesh Normals and then join and weld these meshes to surface uniformity. Weaverbird’s Split Triangle Subdivision is
then used to facetize the surface, a treatment that will expedite 3D printing later on. Both meshes can now be connected
to the Mesh Difference component.

17grasshopper definition

04

05

EXTRUDED STRUT TAG

STRUT LENGTH

This portion of the code takes the end points and the start points on a series of curves and locates a series of planes that
then allow for the orientation of 3D text. The 3D text is made possible by a custom script that converts text to curves.
These curves are then extruded and capped.

Each curve is reduced in length such that they terminate at the end of each strut-slot. A reliable series of dimensions
can be derived from these curves. These dimensions correlate, in terms of their order on the list, to the sequence of tags
generated in by the tagging operation described above, so curve “0” with length 10 - 1/2” will match curve A and vice-versa.

18 grasshopper definition

06 	 TOP PORTION STRUT NODES

This portion of the code shares much in common with the Convex Hull generating procedure detailed earlier. The major
difference is that these nodes, given that their centroids terminate at a set plane, are designed to mount directly to a
formwork apparatus. The top-portion is left open so that a concrete (or some other substrate) can be freely poured through
the opening and into the tensile formwork. The definition controls every geometric aspect of this node, such as the radius
of the opening and the length and thickness of the mounting brackets (though the brackets proved to be fragile).

Mileage with this portion of the definition may vary, as this bracket configuration was designed to function with a very
specific formwork. The code had to be developed very rapidly as well, resulting in a what is, animatedly, very complex and
overwrought structure. Nonetheless, this code can be used as a basis for developing other fully parametric geometries,
offering up, of course, the advantages of rapid alteration and experimentation.

19grasshopper definition

07 	 LOWER PORTION STRUT NODES

Much like the top nodes, this cluster utilizes much of the same componentry from the hull configuration portion of the
definition. However, There is, again, a fairly elaborate methodology for generating the parametric geometry of the base
portion of the node. The base node is intended to be fixed directly to the casting formwork, and it was important to provide
openings for either bolts or screws. The initial geometry featured a simple, circular base, but it was thought advantageous
to reduce printing time by decreasing the amount of surface area that needed to be printed.

The base needs further development, and it became troublesome in some circumstances ensuring that the two geometries
- the node slot and base - merge properly.

20 photographic documentation

photographic documentation

21photographic documentation

22 photographic documentation

23photographic documentation

24 photographic documentation

25photographic documentation

26 photographic documentation

27photographic documentation

28 photographic documentation

29photographic documenation

30 photographic documenation

31photographic documentation

32 photographic documentation

33photographic documentation

