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TITLE

AUTHOR

PROJECT PARTICIPANTS

CITY / COUNTRY

TYPE

CONSTRUCTION  

IMPORTANT TERMS AND DEFINITIONS

LIMB: Procedurally generated multi-nodal strut joints

Josh Hallett - Graduate student studying architecture at the University 
of Texas at Arlington

The work presented herein is a continuation of research objectives 
established in the Spring of 2014, and much credit is owed to Khang 
Nguyen and Tenaj Pinder, who were instrumental in reaching those 
objectives.  Professor Brad Bell has provided indispensable guidance 
and resources, and he continues to furnish both valuable input and 
material assistance in meeting research outcomes.  Collaboration 
with an Undergraduate researchers Halima Arevalo, Anruth Muthama, 
and David Garcia yielded excellent results, and my research 
outcomes were enriched, consequently.  

Dallas Texas
United States

Research/Development of potential pre-cast concrete structural 
assembly techniques

The ultimate intent is to fabricate a pre-fabricated, concrete 
installation of an undetermined scale on campus or at another 
suitable location.

Strut - any linear segment of reinforcing material acting as the 
structural agent between their interconnecting centroids.

Node - component acting as a ‘slotted’ joint at the centroid of two or 
more intersecting struts.

Procedural Modeling - a form of generative modeling that takes 
advantage of pre-defined algorithms to propagate a specified series 
of ‘steps’ or changes to the geometry as a result of modifications to 
the input criteria.  

Grasshopper (GA) - GUI based parametric coding plug-in for the 
NURBS based 3D modeling platform Rhinoceros.
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project overview

01 

02

INITIAL RESEARCH

ESTABLISHING NEW CRITERIA

LIMB constitutes a continuation of research initiated 
in the Spring of 2014 that sought to discover new 
and exploratory methods for reinforcing precast 
concrete panels with non-uniform porosity.  It was 
determined during the course of this research that 
steel reinforcing rebar could be accurately and 
effectively located within a panel by utilizing a 3D 
printed nodes with interior “slots” whereby the rebar 
could be inserted and then fixed via wire-tie.  These 
nodes were generated in the parametric plug-in tool 
Grasshopper, which enabled complete control over 
the nodes geometric properties.  

This allowed not only for a  vast amount of 
flexibility in terms of configuration and scale, but 
rapid alterations in the geometry as a response to 
changing design criteria and testing.    The drawbacks 
of is particular GA (Grasshopper) definition was multi-
fold, however.  Where the node could be 3D printed 
reliably, and was somewhat sturdy, each node had 
to be manually adjusted to account  for each nodal 
centroid.   Furthermore, the node could only account 
for strut orientations in the X and Y Axis.  

Given these limitations in this node, it became 
apparent that the initial GA code would need to be 
rebuilt from the ground up to accommodate new 
design criteria.  This new code would need to enable 
the procedural generation of nodes at all necessary 
centroids within the panel/structure formwork, and 
orient the insertion point of the strut in a similarly 
procedural fashion.  Thus, the intent was to create an 
adaptive strut node that could:

-Identify the requisite centroidal intersections in a 
porous panel or structure

-Generate geometry at those centroids such that they 
corresponded to the necessary orientation of the strut 
or rebar reinforcement

-Implement a cogent coding format that would allow 
for rapid, tooless on-site assembly.  

-Coding operation that could adequate calculate the 
length of each strut in a structural system
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03

04 

ADDITIONAL OBJECTIVES

PROCESS 

Several other project objectives were specified, 
such as exploring potential improvements to the 
tensile, plastic formwork utilized in the fabrication 
of Cast Thicket (TOPOCAST), and to utilize GA 
plug-ins such as Kangaroo, Millipede, and Karumba 
to explore further form optimization techniques.  
Secondly, it was also considered advantageous 
work cooperatively with an undergraduate team 
that, itself, would be experimenting with novel 
tensile-formwork casting techniques.  

As noted previously, the strut-node would function 
best if propagated simultaneously at all centroidal 
node-points, and if their geometry could adapt 
procedurally to changes in the input geometry 
(in this case, 3D line segments representing the 
‘structure’).  “Functionality”, in this case, relating to 
both the inherent accuracy of the digital model, and 
the rapidity at which these models can be converted 
into a file format suitable for printing.

This criteria proved doubly challenging relative to 
past coding forays,as it would necessitate careful 
manipulation and organization of data within ‘data 
trees’ such that simultaneous manipulation of 
geometry at multiple locations could be accomplished.  
Geometry would need to conform to certain universal 
geometrical and performative criteria, yet posses 
morphological flexibility needed to integrate with stuts 
at a specific centroid.

In order to solve these two design problems, the GA 
code would need to properly interpolate the input 
geometry.  The input geometry needed to be reducible 
to a series of intersecting line segments that could be 
‘exploded’, such that the discontinuity between these 
line segments, and thusly the connective centroids or 
‘points’, could be located and effectively ordered into 
a ‘list’ within a ‘data tree’.  Unnecessary points would 
then be culled from the data tree, leaving only those 
points with multiple intersecting line-segments.  

Spheres with a pre-defined radius are then generated 
that these isolated points, and the intersection points 
between the line segments and the outside ‘shell’ of 
the sphere are detected.

Depicted top left: diagramtic representation of Cast 
Thicket
Depicted bottom right: Cast Thicket on display in the 
gallery space at UTA schoold Architecture. 
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04 PROCESS CONT.

Furthermore, these spheres are used to trim the 
intersecting line segments at a certain length, 
allowing their utilization in a variety of ways, including 
the generation of Exoskeleton mesh elements and 
locating planes used to position additional assets.  

Exoskeleton, a plug-in for GA, “thickens line/node 
into watertight meshes. It solves the nodes using 
a convex hull and stitches the hulls together with 
polygonal struts.” Subsequently, one can begin to 
generate surprisingly flexible meshes around these 
isolated point/line combinations.  If the input geometry 
(line segments are altered, the exoskeleton mesh 
will update correspondingly.  Further exoskeleton 
segments are generated, and utilized in ‘Boolean 
Difference” operations that produce slots in the 
mesh, into which the struts will be inserted.  

Integrated into the code are several auxiliary 
functions, such as a labeling/tagging system and 
a definition that would relocate the final, generated 
geometry to C-Plane where they could be quickly 
exported for 3D printing.  Consequently, the overall 
GA definition had to be rebuilt many times in order 
to properly integrate changing research criteria and 
to make certain functions more efficient.

Apart from the challenge of generating the 
geometry, it was also essential that each node 
could be feasibly fabricated via 3D printing (Fused 
Deposition Modeling).  Difficulty in achieving function 
3D prints varied considerably depending on the 
overall complexity of the geometry, and the quality 
of the printer being utilized.  Earlier node prototypes 
could be printed reliably on conventional, consumer 
grade printers.  As the input geometry changed, 
however, from simple branching structures, to 
more complex geometries (such as cast thicket), 
the degree of complexity in the nodes  required a 
printer capable of generating elaborate supports.  
Luckily, access to a Stratasys Systems uPrint SE 
Plus was provided.  This printer could print models 
at incredibly high resolution, ensuring near one to 
one correspondence between the 3D geometry and 
the final, fabricated node. 

Research vectors ultimately resulted in a reduced-
scale production of a proposed skeletal framework 
for Cast Thicket, and a full-scale skeletal framework 
developed for an undergraduate research team 
developing fabrication techniques for concrete 
branching structures.  
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05 COLLABORATION

Once the GA definition for the node had reached a 
functional state, and it was demonstrated that node 
prototypes could be successfully printed, direct 
cooperation with Brad Bell’s undergraduate team 
became advantageous.   The undergraduate team 
was currently exploring the extended application of 
bulge casting (fabric casting) techniques originally 
pioneered at the University of Manitoba by Mark 
West.  The teams intent was to explore casting 
methodologies and novel formwork innovations that 
would allow them to cast multi-directional branching 
structures.  As my research dealt with the structural 
reinforcement of non-uniform, concrete branching 
structures, there were natural synthesis between 
research objectives.  This collaboration would 
provide me with the opportunity to apply my research 
practically and direct my focus singularly to the 
functionality of the node.

In addition to the GA work concerning the node, 
generative modeling techniques making use of 
L-Systems were explored, and a large number 
of small-scale models were produced.  It was 
later deemed that the dendriform geometry was 
structurally problematic, and a tripod like morphology 
was devised in Rhino and then formally optimized in 
Kangaroo through Mesh Relaxation.  

It quickly became apparent that several different types 
of nodes would need to be developed. Otherwise, the 
interior reinforcement could not be properly integrated 
within the overall formwork.  Top and base nodes 
would enable the undergraduate team to fix the steel 
reinforcement to MDF formwork during casting, and 
subsequently fixing the steel reinforcement.  

While it sometimes proved problematic ensuring 
that the internal, skeletal structure properly fit within 
the formwork, the exercise demonstrated that, in 
practice, the 3D nodes facilitated quick, accurate, 
structural reinforcement.  

Depicted top left: MDF forwork assembly with rebar 
cage and interconnected nodes. Seven nodes in total 
were printed for this prototype.
Depicted bottom left: The final hydrostone prototype 
with reinforcing cage cast internally.  
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Facetization of the mesh surface is achieved via the 
‘split triangles subdivision’ component in Weaverbird, 
a plugin for Grasshopper.  The result is a highly efficient 
mesh that simultaneously accelerates 3D printing by 
eliminating curved surfaces.  
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design challenges & prospects

01 

01 

PREFACE

GRASSHOPPER

The purpose of this section is two-fold: to elucidate 
difficulties that arose during all aspects of the 
research process, and to prime the next research 
time that carries this work forward.  Subsequently, 
future teams will be fully aware of the challenges 
they will likely encounter, and have a good baseline 
for surmounting those problems.  

As stated earlier, the most difficult challenge to 
be faced when coding multiple nodes is ensuring 
that geometry propagates correctly at all desired 
locations.  Confusion regarding data-trees, and how 
they function, can easily result in hours of wasted 
effort (as I learned firsthand). Once definitions reach 
a certain scale - dozens of components - attempting 
to resolve particular issues can easily confound 
and frustrate.  Given one’s general proficiency with 
Grasshopper, it may be advisable to break coding 
problems into manageable chunks.  

If one is not well versed in Grasshopper, the nexus 
for understanding the research presented here is to 
practice deconstructing different types of geometry 
into line/point, and then carefully clean up and 
structure the data.

While the current version of Exoskeleton 2 allows 
for a wide range of deformation, there are limitations 
to keep in mind.  If the angle between two line 
segments is too acute, and the radius/thickness 
of the mesh to large, an overlap in mesh geometry 
will occur.  This will prevent the convex hull from 
being properly ‘drawn’, and the coder must either 
reduce the acuteness of the angle, or reduce the 
radius of the tubular geometry being generated by 
the Exoskeleton component.  One must carefully 
evaluate the input geometry and ensure that the 
angles between struts are not too acute, or take 
steps to adjust the node geometry.  

It is also crucial that one is able to calculate the 
exact dimensions of the struts that will be utilized.  
Though a methodology for accomplishing as much 
has been provided, new research could explore 
alternative strategies.

Seen here, the input geometry is ‘exploded’ into line and point, vertices 
flattened, and then duplicate vertices grouped so that non-duplicates 
can be culled via index masking/dispatch operation

Shown here is the routine for successfully generating the convex hulls 
that will serve as the base geometry for the node.  The overall length of 
each node slot is dependent on the predefined radius of the spheres/
breps being used to trim the intersecting lines 
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03

04

NODE DEFORMATIONS AND LIMITATIONS

IMPROVING CODE

The most important aspect of the node is procedural 
deformation with respect to input geometry.  It’s 
performance and, indeed, its utilization becomes 
questionable if geometry cannot be developed around line 
segments with acute angles.  Continued research should 
explore methodologies for developing convex hulls that 
are not susceptible to overlap, and properly adapt to either 
extremely acute/obtuse angles.

This goes without saying, but any modifications that reduce

the overall scale of the definition are ideas, as certain 
operations (Mesh Difference, for example) can hog 
system resources and changes to parameters can 
take excruciatingly long to complete (or even crash the 
definition!). 

Lastly, it would also be advantageous to write a ‘better’ 
definition capable of relocating each node in the system 
to a predefined location with an optimized orientation to 
expedite 3D printing.  

Obtuse angles yield no erratic or unwated outcomes. Even at 44 degrees, the definition continues to function with no 
erros, though one should note that as the gap is reduced, the 
chance of overlap between the strut-slots increases

At 36 degrees, minor drawing errors may develop in a small 
number of nodes.  These issues can usually be resolved either 
by making slight alterations to geometry parameters.  

Given the parameters of this node, failure occurs at 22 degrees.  
The only options available are to reduce the radius of the 
Exoskeleton ‘strut’, or increase the length of the strut-slot so that 
the strut and node no longer overlap.  

01 

03 04 

02 
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05 FABRICATION

Difficulties faced during fabrication dealt almost 
exclusively with 3D printing and the strength of the 
printing material (ABS plastic, in this case).  Scale 
was a contributing factor to many failures, as many 
consumer printers were unable to print nodes at 
a small scale.  Printing with rafts, or reducing the 
number of nodes being printed can mitigate some 
of these issues at scale, however, it proved to be 
much more efficient to simply print smaller nodes on 
a higher quality printer.  

As mentioned previously, the sometimes unwieldy 
geometry of the nodes will require 3D printed 
supports in order for the print to be successful.  
Supports generated by Makerware were deemed 
unsatisfactory on every occasion.  The uPrint SE 
Plus proved to be the most reliable option, but at a 
higher cost per print.  

Even when printed at high density, ABS plastic will 
delaminate quite easily given even a small amount 
of force.   Great care should be taken during 
assembly to avoid putting too much pressure on 
the protruding strut-slots, as these carry the most 
risk of being cleaved from the core centroid of the 
node.  While improvements to geometry may yield 
improved rigidity, the best solution would be to 
change the filament material used during printing.  

The success of any digital fabrication project 
requires a close correlation between the final, 
fabricated prototype, and its accuracy relative to the 
digital model.  Knowing whether or not there have 
been slight deformations in the ABS during printing, 
for instance, may be difficult to discern, and could 
have considerable impact upon the final assembly.  
If the material being utilized as the structural strut  
is uneven or crooked, the final results may be even 
more askew.  On some occasions, the strut-slots 
of several nodes had to be milled out with a larger 
diameter bore so that the desired strut could be 
properly fit to the node.  The failure to account for 
the variability of your building materials can result in 
a series of compounding errors that further reduces 
conformity to the digital mode. 

Top right: An attempt to print 24 small, individual nodes in one 
attempt ends  in failure.  

Middle & lower right: full-scale nodes broken during assembly.  
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06 PROSPECTS

While initial research has proved promising, 
the intent is to produce a variable, procedurally 
generated node suitable for industry utilization.  
Currently, the nodes lack the material strength 
necessary to withstand the abuse of a conventional 
construction setting.  Furthermore, the question 
of whether or not the nodes meet industry ‘best-
practices’ for assembling rebar has yet to be 
satisfactorily answered.  Thus any future research 
team should explore the following:

-Material strength.  Nylon is a much stronger material 
with high resistance to delamination when compared 
to ABS or PLA plastics.  The need for highly variable 
deformations in the node geometry necessities a 
material sympathetic to mass custimization.  

-Fabrication accuracy: Develop methodologies that 
ensure simultaneity with the digital model.  Much like 
Cast Thicket, the use of plum lines hanging from each 
node, corresponding to a corresponding location on 
the ground plane, would enable fabricators to make 
minor adjustments as needed during assembly.

-Geometric optimization.  Grasshopper plugins 
such as Kangaroo or Millipede could refine the 
node mesh, making the node both more structurally 
sound and materially efficient.  

-Multi-Discipline Integration.  Consultation with 
structural engineers (especially those experienced 
with rebar) would be critical for determining whether 
the fastening strategies presented here would be 
ideal for industry implementation.  

-Large-scale installation.  Proof of concept has 
been  roughly demonstrated, but the development 
of an installation combining both the flexibility of 
reinforcing system composed of strut nodes, and 
tensile formwork would present a unique opportunity 
to combine a number of different research agendas 
currently being pursued by Brad Bell and the Digital 
Fabrication Consortium at UTA.  

Top left: some unfortunate casualties during assembly of the 
Cast Thicket mockup

Bottom left: the ends of each rebar segment needed to be 
ground down in order for them to fit cleanly.  
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grasshopper definition

01 

01 

BREAKDOWN

INPUT AND CLEANUP

The purpose of this section is to, hopefully, discombobulate 
the GA definition for the uninitiated, or for anyone who 
happens to take this research forward.  Unfortunately, 
and regardless of how detailed this guide might be, 
Grasshopper definitions are innately idiosyncratic in 
nature, each one representing the personal preferences 
and workflows of the individuals who built them.  There 
are no work “standards” when it comes to Grasshopper, 
unfortunately.  

This is simple, yet crucial, portion of the definition.  Depending on your input geometry, it ultimately needs to be reduced 
to a combination of verities and line.  The input geometry should be flattened, unnecessary vertices culled, and duplicates 
deleted.  

Point Groups search for points at a 
provided distance from an existing set 
of points.  

Once the unneeded vertices have been 
culled, use Delete Duplicate Points to 
remove overlapping vertices

Prune your data trees with Clean Tree 
and remove null values. 

 I have attempted to group ‘component clusters’ based on 
their function, but a good amount of reverse engineering 
may be required nonetheless. Each cluster will be 
diagramed, explained, and paired with some relevant 
imagery from Rhino depicting various aspects of what that 
cluster may generate or control.  Access should also be 
made to earlier definitions, the study of which will give you 
insight into the developmental process of the node. 
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02 

03 

VERTICE DETECTION

CONVEX HULL GENERATION

If necessary, you may need to break out the top and bottom level vertices so as to generate specialized nodes.  This 
portion of the definition generates a scalable detection boundaries for both the top and bottom vertices.  

Once the desired vertices have been isolated, use them to generate spheres.  These spheres will be used to trim the line 
segments that we’ve derived from the original input geometry.  Use the Trim With Breps component and then pull out the 
Inside List of ‘line-like curves’.  These curves will be used to generate the convex hulls via the Exoskeleton 2 component, 
so they’ll need to be flattened if they haven’t been already.  The resulting meshes should be similar to those shown above.  
Exoskeleton 2 will also be needed to create the subtractive geometry required for the Mesh Difference component.  
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03 CONVEX HULL GENERATION CONT. 

Connecting the cleaned up, input curve geometry, and spheres to a Surface I Curve component will provide points and 
normals from which Plane Normals will be located, and used to offset SDL Curves that then get piped into a second 
Exoskeleton 2 component.  

At this point, there should be two Exoskeleton 2 components generating both additive and subtractive geometry: the first 
generating the ‘limbs’ for the strut node, and the second generating subtractive cylinders.  It is generally advisable to Unify 
Mesh Normals and then join and weld these meshes to surface uniformity.  Weaverbird’s Split Triangle Subdivision is 
then used to facetize the surface, a treatment that will expedite 3D printing later on.  Both meshes can now be connected 
to the Mesh Difference component.
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04 

05 

EXTRUDED STRUT TAG

STRUT LENGTH

This portion of the code takes the end points and the start points on a series of curves and locates a series of planes that 
then allow for the orientation of 3D text.  The 3D text is made possible by a custom script that converts text to curves.  
These curves are then extruded and capped.  

Each curve is reduced in length such that they terminate at the end of each strut-slot.  A reliable series of dimensions 
can be derived from these curves.  These dimensions correlate, in terms of their order on the list, to the sequence of tags 
generated in by the tagging operation described above, so curve “0” with length 10 - 1/2” will match curve A and vice-versa.
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06 	 TOP PORTION STRUT NODES

This portion of the code shares much in common with the Convex Hull generating procedure detailed earlier.  The major 
difference is that these nodes, given that their centroids terminate at a set plane, are designed to mount directly to a 
formwork apparatus.  The top-portion is left open so that a concrete (or some other substrate) can be freely poured through 
the opening and into the tensile formwork.  The definition controls every geometric aspect of this node, such as the radius 
of the opening and the length and thickness of the mounting brackets (though the brackets proved to be fragile).  

Mileage with this portion of the definition may vary, as this bracket configuration was designed to function with a very 
specific formwork.  The code had to be developed very rapidly as well, resulting in a what is, animatedly, very complex and 
overwrought structure.  Nonetheless, this code can be used as a basis for developing other fully parametric geometries, 
offering up, of course, the advantages of rapid alteration and experimentation.  
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07 	 LOWER PORTION STRUT NODES

Much like the top nodes, this cluster utilizes much of the same componentry from the hull configuration portion of the 
definition.  However, There is, again, a fairly elaborate methodology for generating the parametric geometry of the base 
portion of the node.  The base node is intended to be fixed directly to the casting formwork, and it was important to provide 
openings for either bolts or screws.    The initial geometry featured a simple, circular base, but it was thought advantageous 
to reduce printing time by decreasing the amount of surface area that needed to be printed.  

The base needs further development, and it became troublesome in some circumstances ensuring that the two geometries 
- the node slot and base - merge properly.  
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photographic documentation
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